Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Incoherent feedforward networks exhibit the ability to generate temporal pulse behavior. However, exerting control over specific dynamic properties, such as amplitude and rise time, poses a challenge and is intricately tied to the network’s implementation. In this study, we focus on analyzing sequestration-based networks capable of exhibiting pulse behavior. By employing time-scale separation in the fast sequestration regime, we approximate the temporal dynamics of these networks. This approach allows us to establish a mapping that elucidates the impact of varying the kinetic rates and pulse specifications, including amplitude and rise time. Furthermore, we introduce a positive feedback mechanism to regulate the amplitude of the pulsing response.more » « lessFree, publicly-accessible full text available December 16, 2025
-
Constructing molecular classifiers that enable cells to recognize linear and non-linear input patterns would expand the biocomputational capabilities of engineered cells, thereby unlocking their potential in diagnostics and therapeutic applications. While several biomolecular classifier schemes have been designed, the effect of biological constraints such as resource limitation and competitive binding on the function of those classifiers has been left unexplored. Here, we first demonstrate the design of a sigma factor-based perceptron as a molecular classifier working on the principles of molecular sequestration between the sigma factor and its anti-sigma molecule. We then investigate how the output of the biomolecular perceptron,i.e., its response pattern or decision boundary, is affected by the competitive binding of sigma factors to a pool of shared and limited resources of core RNA polymerase. Finally, we reveal the influence of sharing limited resources on multi-layer perceptron neural networks and outline design principles that enable the construction of non-linear classifiers using sigma-based biomolecular neural networks in the presence of competitive resource-sharing effects.more » « less
-
NA (Ed.)Abstract A lack of composable and tunable gene regulators has hindered efforts to engineer non-model bacteria and consortia. Toward addressing this, we explore the broad-host potential of small transcription activating RNA (STAR) and propose a design strategy to achieve tunable gene control. First, we demonstrate that STARs optimized forE. colifunction across different Gram-negative species and can actuate using phage RNA polymerase, suggesting that RNA systems acting at the level of transcription are portable. Second, we explore an RNA design strategy that uses arrays of tandem and transcriptionally fused RNA regulators to precisely alter regulator concentration from 1 to 8 copies. This provides a simple means to predictably tune output gain across species and does not require access to large regulatory part libraries. Finally, we show RNA arrays can be used to achieve tunable cascading and multiplexing circuits across species, analogous to the motifs used in artificial neural networks.more » « less
-
Dabbene, Fabrizio (Ed.)We show how subtraction can be performed via a simple chemical reaction network that includes molecular sequestration. The network computes the difference between the production rate parameters of the two mutually sequestering species. We benefit from introducing a simple change of variables, that facilitates the derivation of an approximate solution for the differential equations modeling the chemical reaction network, under a time scale separation assumption that is valid when the sequestration rate parameter is sufficiently fast. Our main result is that we provide simple expressions confirming that temporal subtraction occurs when the inputs are constant or time varying. Through simulations, we discuss two sequestration-based architectures for feedback control in light of the subtraction operations they perform.more » « less
-
Cellular signaling pathways are responsible for decision making that sustains life. Most signaling pathways include post-translational modification cycles, that process multiple inputs and are tightly interconnected. Here we consider a model for phosphorylation/dephosphorylation cycles, and we show that under some assumptions they can operate as molecular neurons or perceptrons, that generate sigmoidal-like activation functions by processing sums of inputs with positive and negative weights. We carry out a steady-state and structural stability analysis for single molecular perceptrons as well as for feedforward interconnections, concluding that interconnected phosphorylation/dephosphorylation cycles may work as multilayer biomolecular neural networks (BNNs) with the capacity to perform a variety of computations. As an application, we design signaling networks that behave as linear and non-linear classifiers.more » « less
An official website of the United States government
